Cyberinfrastructure & Bioinformatics

Transformation of The Biology Workbench
R. H. Niedner
Biological Data are

- distributed: 500 - 1000 databases
- heterogeneous: type, format, source, methods
- massive: up to 100K of individual data points, or 100MB blobs (image files)
Bioinformatics

Tools:

- hundreds of tools for sequence, alignment and structure analyses
- different input / output formats
- hardware and software requirements
- which tool for which job
- how do I run them and how do I run them right
To Much Information
Biology Workbench

1996 Desktop Computers

- 200 MHz Pentium
- 1-2 GB HDD
- 32 MB Ram

The original concept behind BWB: “Wouldn't it be nice if I had a web site that would let me run BLAST, ClustalW, etc. on my collection of sequences, or a collection of sequences from many remote resources?”
The current Workbench

Created 1996-1997 at NCSA by Shankar Subramaniam, Eric Jakobsson, Roger Unwin, Brian Saunders, Mark Stupar, Dawn Cotter, Jim Fenton, Curt Jamison, Brad Mills, George Pappas, David Tcheng (at SDSC since 2000)

http://workbench.sdsc.edu/

The Biology WorkBench is a web-based tool for biologists. The WorkBench allows biologists to search many popular protein and nucleic acid sequence databases. Database searching is integrated with access to a wide variety of analysis and modeling tools, all within a point and click interface that eliminates file format compatibility problems.

First time users please register for a free account.

Click to Enter the Biology Workbench 3.2

We have written a Frequently Asked Questions document for our users, and a list of recent updates. In addition, many helpful tutorials have been developed by the Biology Student Workbench group, an ECOGRAP team focusing on biology and bioinformatics education. These are good places to get started, as well as the How To tutorial. If these documents do not help you with your problem, please send a message to bioweb-help@sdsc.edu.

Suggested Web Browser: the Biology Workbench was originally developed for Netscape Communicator or Navigator, up through version 4.7x. Microsoft Internet Explorer (especially older versions) can be unpredictable when loading the Biology Workbench, but the latest versions of Explorer seem to work fine. Because we are unable to force Internet Explorer to open secondary windows with our software, showing database records and reading help pages can be a bit clumsy. Nonetheless, most Biology Workbench operations *should* work within Internet Explorer.

Some people notice browser-related problems that go away when one clears the disk cache, and turning off the disk cache altogether when using the Biology Workbench might be a good idea. Also, your
Workbench Features

- Platform independent: only a web browser is needed (no plugins required)
- All calculations provided by the Workbench Server
- Individual login password security provided.
- Data storage area provided for results.
Features cont.

- 33 Federated protein and nucleic databases with robust search utility
- 66 of protein, nucleic, and alignment tools
- Seamless movement of sequence data between the various tools
- Can be (and is) used over phone modem.
Hardware

- 4x900 MHz processor Sun Fire 480R system, 8 GB memory
- 768 GB disk (670 GB with RAID)
 - 500 GB actively used
 - 400 GB used for database mirroring
 - Genbank alone uses over 300 GB
- Need close to 50 GB temporary space for database mirroring process
Statistics

- Over 150,000 users since the Biology Workbench was moved to SDSC
- 2000 users / 200,000 hits each week
- Relatively low CPU usage (10–20% CPU utilization)
- Most CPU usage by a small number of “power users”
New Users Per Month

- Users per month
- 1 year Average
- Linear (Users per month)

Date
- Feb-00
- Jun-01
- Oct-02
- Mar-04
- Jul-05
- Dec-06

New Users
- 0
- 500
- 1000
- 1500
- 2000
- 2500
- 3000
- 3500
- 4000
- 4500
- 5000
Yearly Usage

- Users
- Jobs

Year
- 1999
- 2000
- 2001
- 2002
- 2003
- 2004
- 2005
- 2006
- 2007

Users
- 0
- 200000
- 400000
- 600000
- 800000
- 1000000
- 1200000
- 1400000
- 1600000
- 1800000
- 2000000

Jobs
- 0
- 200000
- 400000
- 600000
- 800000
- 1000000
- 1200000
- 1400000
- 1600000
- 1800000
- 2000000
Command Flow

CLIENT

Web Browser

Web Server

SERVER

User (session) Databases

CGI Core

Master Wrapper API routines

Flatfile Databases

Perl wrapper

Command-line tool[i]

Perl wrapper

Command-line tool[i]

Perl wrapper

Command-line tool[i]
CGI Core
(C legacy code)

- Collects form and hidden variables
- Writes and Reads in session files
- Processes old and new sequences
- Performs certain “core” operations (also not good)
- Draws basic interface
Commandline Tool Wrappers (Perl)

- Core calls module wrapper script, which then “calls” API, which then calls a “main” script in the module wrapper script.
- Scripts set parameters in form the application programs require
- Parse input data into required format
- Parse output (render “prettier” form/identify sequences)
Wrappers cont.

- Sequence conversion - done by Perl application ("seqvert") [formerly done with Readseq]

- Output from application programs is parsed, to get information and to process into "prettier" form

- Importable sequences identified as such, and stored as hidden variables
Workbench Tools

- BLAST (including PSI-BLAST)
- Fasta
- Clustal W
- Boxshade
- Assorted Phylip Tools (drawtree, drawgram, protdist, protpars, dnadist, dnapars)
- NDJINN (database searching interface)
- other global and local alignment tools
- secondary-structure prediction
- sequence statistics
- pattern-match only homology
- restriction enzyme and primer tools
Workbench Statistics

- 71% of the user base is domestic.
- 44% are academic
- 15% noncommercial
- 11% commercial
- 1% government
- The 29% international user population represents over 40 countries
- 50% of present users employ the BW for government-funded research programs
What we really want

"There should be a web site that can host all of my biological data—not just sequences—and allow me to analyze it using any modern tool I choose."
So what is wrong?

- User directories all in one directory
 - Physical limit of close to 32,000
 - Purge users on regular basis by time since last access

- Session file / core interaction
 - Constantly read and rewritten
 - Large sessions (many sequences or large sequences) cause errors

- Synchronicity errors (Often blows away session files)

- Data types (Hard to define non-sequence data types)

- Browser idiosyncrasies (embedded non-standard CGI in the core)
and more

- very difficult to add new tools/data
 - no structure, protein interaction or pathway data
 - no genome or SNP analysis

- current architecture doesn’t scale
 - monolithic CGI Core, no RDBMS, no segregation of function
 - hard- and hand coded adapters for each tool

- very limited interface and functionality
 - limited search and visualization capabilities
 - only one tool at the time - no workflows
So let’s use the Grid

The promise:

- Super powerful processing power
- Super large memory
- Super high-speed network
- Super high-capacity storage space

Transformation of remote supercomputing power into a virtual local resource
Cyberinfrastructure

BUT where is the SUPER EASY

- Differing Authentication, Authorization
- Different Access and Allocation Policies
- Multitude of Platforms and Standards
- How do I find what I need (Data, Applications)
- Where and When can I run my job
Cyberinfrastructure

Current Reality is that researchers still:

- need to know too many details
- have to have too much local support
- deal with too many standards
- before they get to do grid-enabled science!
SDSC Mission

To serve as a premiere resource for design, development, and deployment of cyberinfrastructure for the national scientific community.

Harness the power of the grid and shield researchers from complexities of the implementation:

Create Science Portals
The new Grid-enabled Workbench
Key Technologies for the new Workbench

- XML and Ontologies
- Database Federation
- Object Relational Mapping
- SOA and Webservices
- Workflows
Idiosyncrasies of Bioinformatics data

- Data are complex to model (many different data types)
- New types of data emerge regularly (Data analysis generates new data that also have to be modeled and integrated)
- Raw data must be archived (The terabyte of bioinformatics data consists of a large number of objects)
- Data are updated very frequently, accessed intensively and exchanged very often by researchers
- All kinds of users (biologists, programmers, database managers ..) need to issue complex queries
- Data volume grows exponentially, is disseminated in a myriad of different databases and comes in heterogeneous formats
Advantages of XML

- XML is highly flexible (simple to modify a DTD or XML Schema)
- The XML and DTD files are human readable (i.e. they can be easily edited by people with only few computer skills)
- XML is Internet-oriented and has very rich capabilities for linking data (can be used to link databases)
- XML provides an open framework for defining standard specifications (important point because bioinformatics clearly lacks standardization)
Cellular component

Membrane

Cell wall

Extracellular

Molecular Function

Biological Process

is a

is a

is a

part of

part of

Type II protein (sec) secretion system complex (GO: 0015627)
Ontology Types

- **Conceptual Model**
 - DB Schemas, XML Schema
 - Extended ER
 - Thesaurus
 - Relational Model, XML
 - Natural language

- **Logical Theory**
 - First Order Logic
 - Modal Logic
 - Description Logic
 - DAML+OIL, OWL
 - UML

- **Taxonomy**
 - Is Sub-Classification of
 - Relational Model, XML

- **Weak Semantics**
 - Is Sub-Classification of
 - Natural language

- **Strong Semantics**
 - Is Disjoint Subclass of
 - With transitivity property

Semi-formal

Formal

Semi-informal

Highly informal
Service Oriented Architecture

- Application Frontend
- Service
 - Service Contracts
 - Implementation
 - Interface
 - Business Logic
 - Data
- Service Repositories
- Service Bus
Workflows
Object-Oriented Program

Objects
- Identity
- Equality
- Inheritance
- Association
- Aggregation
- Polymorphism

Relational Database

Tables
- Primary key
- Relations
 - one-to-one
 - one-to-many
 - many-to-many

MIS MATCH

R. H. Niedner 01/25/2004
TwinDB Software Architecture

![Diagram of TwinDB Software Architecture](image)
Persistent Object

Plain Old Java Object (POJO)

Class name

- Identifier property
- No-argument public constructor
- Accessor methods
- Collection property is an interface

XML Hibernate Configuration

- Hibernate Dialect
- JDBC Driver
- Connection Parameter
- Class Mapping

XML Class Mapping

Class name - Table name
Object ID - Primary Key
Attribute - Column
Data Type - Column Type

Table name

Column 1 PK
Column 2
Column 3
.........
Column x

R. H. Niedner 01/25/2004
Service Provider

- Cross-domain expertise translating research goals into effective IT-infrastructure
- Analyses of data acquisition, storage, and analyses
- Database design and development
- Application design and development industry standards, scalable techniques, appropriate technologies
- Parallelizing and optimize application code
- Assisting in moving desktop applications into a Client-Server architecture fit to run on the grid